OCR Maths FP1 Topic Questions from Papers Complex Numbers Answers

PhysicsAndMathsTutor.com

1	(i) 22 – 2i	B1B1	2	Correct real and imaginary parts
	(ii) $z^* = 2 - 3i$ 5 - 14i	B1 B1B1	3	Correct conjugate seen or implied Correct real and imaginary parts
	(iii) $\frac{4}{17} + \frac{1}{17}i$	M1 A1	2	Attempt to use <i>w</i> * Obtain correct answer in any form
PMT			7	

⁽Q3, June 2005)

2	$x^{2} - y^{2} = 21$ and $xy = -10$ ±(5 - 2i)	M1 A1A1 M1 M1 A1	6	Attempt to equate real and imaginary parts of $(x + iy)^2$ and 21 –20i Obtain each result Eliminate to obtain a quadratic in x^2 or y^2 Solve to obtain $x = (\pm) 5$ or $y = (\pm) 2$ Obtain correct answers as complex numbers
			6	

(Q4, June 2005)

3	 (i) Circle Centre (0, 2) Radius 2 Straight line Through origin with positive slope 	B1 B1 B1 B1 B1	5	Sketch(s) showing correct features, each mark independent
	(ii) 0 or 0 +0i and 2 + 2i	B1ftB1f t	2 7	Obtain intersections as complex numbers

Т

_

(Q6, June 2005)

4	 (i) 2 + 16i −i −8i² 10 +15i (ii) 	M1 A1 M1 A1	2	Attempt to multiply correctly Obtain correct answer Multiply numerator & denominator by conjugate Obtain denominator 5
	$\frac{1}{5}(10 + 15i)$ or 2 + 3i	A1ft	3 5	Their part (i) or 10 + 15i derived again / 5

(Q1, Jan 2006)

т	5	(a) (i) $\sqrt{13}$ (ii)	B1	1	Obtain correct answer, decimals OK
		- 0.59	M1 A1 A1	3	Using tan ^{-1 b} / _a , or equivalent trig allow + or - Obtain 0.59 Obtain correct answer
r		(b) 1 – 2i	M1 A1A1 A1	4	Express LHS in Cartesian form & equate real and imaginary parts Obtain $x = 1$ and $y = -2$ Correct answer written as a complex number
		(c)	B1 B1	2	Sketch of vertical straight line Through (-0.5, 0)
				10	t

(Q7, Jan 2006)

6	(<u>i)</u> 2 + 3i	B1	1	Conjugate seen	
3				(Q3, June 200)6)

7	(i) -7i	B1 B1	2	Real part correct Imaginary part correct
	(ii) 2 + 3i -5 + 12i	B1 B1 B1	3	iz stated or implied or $i^2 = -1$ seen Real part correct Imaginary part correct
	(iii) $\frac{1}{5}(4 - 7i)$ or equivalent	M1 A1 A1	3 8	Multiply by conjugate Real part correct Imaginary part correct N.B. Working must be shown

(Q5, June 2006)

8	(i) Circle, Centre <i>O</i> radius 2	B1 B1		Sketch showing correct features
	One straight line	B1		
	Through O with +ve slope	B1		
	In 1 st quadrant only	B 1	5	
	(ii) $1 + i\sqrt{3}$	M1		Attempt to find intersections by trig, solving equations or from graph
		A1	2 7	Correct answer stated as complex number

(Q6, June 2006)

9		M1		Attempt to equate real and
				imaginary parts of $(x + iy)^2$ and 15
	$x^2 - y^2 = 15$ and $xy = 4$	A1 A1		$+8i$ \pm
		M1		Obtain each result
		DM1		Eliminate to obtain a quadratic in x^2 \pm
	$\pm (4+i)$	A1	6	or y^2
			6	Solve to obtain $x = (\pm)4$, or $y =$
				(±)1
				Obtain only correct two answers as complex numbers

+

(Q2, Jan 2007)

10	(i)	+	B1		Circle
			B1		Centre (1, -1)
			B1	3	Passing through (0, 0)
	(ii)	+	B1		Sketch a concentric circle
			B1		Inside (i) and touching axes
			B1	3	Shade between the circles
			DI	5	Shade between the cheres

PMT

(Q4, Jan 2007)

11	(i)	B1	1	Show given answer correctly
	(ii)	M1		Attempt to solve quadratic equation or substitute $x + iy$ and equate real and imaginary parts
	$-1\pm i\sqrt{3}$	A1		Obtain answers as complex numbers
	(iii)	A1	3	Obtain correct answers, simplified
	(11)	B1		Correct root on x axis, co-ords. shown
		B1		
				Other roots in 2 nd and 3 rd quadrants
		B1		
			3	Correct lengths and angles or co- ordinates or complex numbers
			7	shown

(Q5, Jan 2007)

12	EITHER	M1		Use trig to find an expression for a (or b)
	a = 2	A1		Obtain correct answer
		M1		Attempt to find other value
		A1		Obtain correct answer a.e.f.
	$b=2\sqrt{3},$	M1		(Allow 3.46)
	OR OR	M1		State 2 equations for <i>a</i> and <i>b</i>
		A1 A1	4	
				Attempt to solve these equations
	$a=2$ $b=2\sqrt{3}$			Obtain correct answers a.e.f.
			4	SR \pm scores A1 only

PMT

⁽Q1, June 2007)

	-			
13	(i) Circle, centre (3, 0),	B1B1		Sketch showing correct features
	y-axis a tangent at origin	B1		N.B. treat 2 diagrams asa MR
	[–] Straight line,	B1		
	through $(1, 0)$ with +ve slope	B1		
	In 1 st quadrant only	B1		
	(ii) Inside circle, below line,	B2ft	6	Sketch showing correct region
	above <i>x</i> -axis		2	SR: B1ft for any 2 correct features
			8	

(Q8, June 2007)

14	(i)	M1		Attempt to equate real and imaginary parts of
	$x^2 - y^2 = 16$ and $xy = 15$			$(x + iy)^2$ and 16+30i
		A1A1		Obtain each result
		M1		Eliminate to obtain a quadratic in x^2 or y^2
	$\pm (5 + 3i)$	M1		Solve to obtain $x = (\pm) 5$ or $y = (\pm) 3$
	(ii) $z = 1 \pm \sqrt{16 + 30i}$	A1	6	Obtain correct answers as complex numbers
		M1*		Use quadratic formula or complete the square
	6 + 3i, -4 - 3i	A1		
		*M1dep	5	Simplify to this stage
		A1 A1ft		Use answers from (i)
				Obtain correct answers
			11	

(Q10, June 2007)

15 (i) $z^* = 3 + 4i$	B1	Conjugate seen or implied
21 +12i	B1 2	Obtain correct answer
(ii) 3 – 5i	B1	Correct $z - i$ or expansion of $(z - I)^2$ seen
	B1ft	Real part correct
-16 – 30i	B1ft 3	Imaginary part correct
(iii)	M1	Multiply by conjugate
$\frac{9}{25} + \frac{12}{25}i$	A1	Numerator correct
25 25 25 2	A1 3	Denominator correct
	8	

ИT

(Q4, Jan 2008)

19	M1		Multiply by conjugate of denominator
	A1 A1		Obtain correct numerator
$\frac{7}{26} + \frac{17}{26}$ i.	A1	4	Obtain correct denominator
26 26 26		4	

(Q1, Jan 2009)

20	(i) $x^2 - y^2 = 2, 2xy = \sqrt{5}$	M1 A1		Attempt to equate real and imaginary parts Obtain both results a.e.f.
	$4x^{4} - 8x^{2} - 5 = 0$ $x = \pm \frac{\sqrt{10}}{2}, y = \pm \frac{\sqrt{2}}{2}$ $\pm (\frac{\sqrt{10}}{2} + i\frac{\sqrt{2}}{2})$ (ii) $z^{2} = 2 \pm i\sqrt{5}$ $z = \pm (\frac{\sqrt{10}}{2} \pm i\frac{\sqrt{2}}{2})$	M1 M1 A1 A1 M1 A1 M1 A1 M1	6	Eliminate to obtain quadratic in x^2 or y^2 Solve to obtain x (or y) values Correct values for both x & y obtained a.e.f. Correct answers as complex numbers Solve quadratic in z^2 Obtain correct answers Use results of (i)
		Alft	4	Obtain correct answers, ft must include root from conjugate
	(iii)	B1ft	1	Sketch showing roots correctly \times
	(iv)	B1 B1ft B1ft	3	Sketch of straight line, \perp to α Bisector
			14	

(Q10, Jan 2009)

21	(i) 11 – 29i	B1 B1	2	Correct real and imaginary parts
	(ii) 1+41i	B1 B1	2 4	Correct real and imaginary parts

(Q3, June 2009)

 $p \\ p$

1T

ΛT

22	(i) $3\sqrt{2}, -\frac{\pi}{4} \text{ or } -45^{\circ} \text{ AEF}$	B1 B1	2	State correct answers
	(ii)(a) (ii)(b)	B1B1 B1 ft B1 B1 B1 B1	3	Circle, centre $(3, -3)$, through <i>O</i> ft for $(\pm 3, \pm 3)$ only Straight line with +ve slope, through $(3, -3)$ or their centre Half line only starting at centre
	(iii)	B1ft B1ft B1ft	3 11	Area above horizontal through <i>a</i> , below (ii) (b) Outside circle

(Q6, June 2009)

 \sum

23	x - iy	B1 M1	Conjugate known Equate real and imaginary parts
	$x + 2y = 12 \qquad 2x + y = 9$	A1	Obtain both equations, OK with factor of i
		M1	Solve pair of equations
	z = 2 + 5i	A1 5	
			number
			S.C. Solving $z + 2iz = 12 + 9i$ can get
		E	max 4/5, not first B1
		5	
			(Q3, Jan 201
24 (i)		M1	Attempt to equate real and imaginary
- • \-/			parts of $(x + iy)^2 \& 5 - 12i$
	$x^2 - y^2 = 5$ and $xy = -6$	A1	Obtain both results, a.e.f
	-	M1	Obtain quadratic in x^2 or y^2
		M1	Solve to obtain $x = (\pm)3$ or $y = (\pm)2$
	$\pm (3-2i)$	A1 5	Obtain correct answers as complex nos
quare	(ii) root		B1ft Circle with centre at their
quare	1001	B 1	Circle passing through origin
		B1ft	2^{nd} circle centre correct relative to 1^{st}
		B1 4 9	Circle passing through origin
			(Q8, Jan 201
25	(i) $5 + 12i$	B1B1	Correct real and imaginary parts
	13	Blft	Correct modulus
	67.4° or 1.18	B1ft 4	Correct argument
	(ii)	M1	Multiply by conjugate
		A1	Obtain correct numerator
	11 27;	A1 3	Obtain correct denominator
	$-\frac{11}{85}-\frac{27}{85}$ i	A1 3	Obtain correct denominator

1T

PMT

(Q4, June 2010)

26 (i) (a) (b)	B1B12 Circle centre $(3, -4)$, through origin B1B12 Vertical line, clearly $x = 3$
(ii)	B1ft Inside their circle B1ft 2 And to right of their line, if vertical
	6
	(Q6, June 2010)
27 (i)	M1 Attempt to equate real and imaginary parts
$x^2 - y^2 = 3 xy$	
z = 2 + i	A1 5 Obtain correct answer as a complex no.
(ii)	B1 1 Obtain given answer correctly
(iii) $w^3 = 2 \pm 11 i$	 M1 Attempt to solve quadratic equation A1 Obtain correct answers M1 Choose negative sign M1 Relate required value to conjugate of (i)
w = 2 - i	A1 5 Obtain correct answer 11
	(Q10, June 2010)

1T

28 (i)	- 12 +13i	B1B1 2	Real and imaginary parts correct
(ii)	$\frac{27}{37} - \frac{14}{37}$ i	B1 M1 A1 A1 4	 z* seen Multiply by w* Obtain correct real part or numerator Obtain correct imaginary part or denom. Sufficient working must be shown

(Q2, Jan 2011)

29 (i) (a) (b)	B1*Vertical linedepB1 2Clearly through (4, 0)B1Sloping line with +ve slopeB1Through (0, -2)B1ft3Half line starting on y-axis 45° shown convincingly
(ii)	 B1ft Shaded to left of their (i) (a) B1ft Shaded below their (i) (b) must be +ve slope B1ft 3 Shaded above horizontal through their (0, -2) NB These 3 marks are independent, but 3/3 only for fully correct answer.

(Q6, Jan 2011)

30 (i)	a =2	B1		Correct modulus
	$\arg a = 60^{\circ}, \frac{\pi}{3}, 1.05$	B1	2	Correct argument
(ii)		B1		Circle
		B1		Centre $(1,\sqrt{3})$
		B1		Through origin, centre $(\pm 1, \pm \sqrt{3})$ and
				another y intercept
		B1		Vertical line
		B1*		Through <i>a</i> or their centre, with +ve gradient
		DB1	6	Correct half line
	αβ	8		
	α p			(Q5, June 20
				α β β
31 (i)	16 + 30i	B1	1	State correct value
 (ii)		 M1		Use $a = -$ (sum of roots)
()	a = -32	A1		Obtain correct answer
		M1		Use $b =$ product of roots
	<i>b</i> = 1156	A1	4	Obtain correct answer
		M1		Substitute, expand and equate imag. parts
		A1 M1		Obtain $\mathbf{a} = -32$
		A1		Equate real parts Obtain b = 1156
(iii)		M1		Attempt to equate real and imaginary parts of $(p+iq)^2$ & 16 – 30i or root from (ii)
	$p^2 - q^2 = 16$ and $pq = -15$	A1		Obtain both results cao
		M1		Obtain quadratic in p^2 or q^2
		M1		Solve to obtain $p = (\pm)5$ or $q = (\pm)3$
		A1		Obtain 2 correct answers as complex nos
	$\pm (5 \pm 3i)$	A1 M1 A1	7	Obtain 2 correct answers as complex nos Attempt at all 4 roots State other two roots as complex nos

32	$a^2 + 5^2 = 13^2$ a = 12	M1 A1	Use formula for modulus Obtain correct answer	
	$\tan^{-1}\frac{5}{a}$	M1	Use formula for argument	
	0.395 or 22.6° or 0.126π	A1FT [4]	Obtain correct answer allow 0.39	

(Q1,	Jan 2012)
------	-----------

++

33	$= x^{2} - y^{2} = 3 \text{ and } xy = 3\sqrt{2}$ $x^{4} - 3\overline{x^{2}} - 18 = 0 \text{ or } y^{4} + 3y^{2} - 18 = 0$	M1 A1 M1	Attempt to equate real and imaginary parts Obtain both results Eliminate to obtain quadratic in x^2 or y^2
	$x = \pm \sqrt{6} \text{ or } y = \pm \sqrt{3}$ $\pm (\sqrt{6} + i\sqrt{3})$ $=$	M1 A1 A1 [6]	Solve to obtain <i>x</i> or <i>y</i> value Both values correct Correct answers as complex numbers

34	Т	B1	Circle	
		B1	Centre $(\sqrt{3},1)$	
	I	B1 B1 B1	Passing through O and crosses y-axis again Line, with correct slope shown $\frac{1}{2}$ line starting at O	
	I	B1 [6]	² Interstanting at O Completely correct diagram for both loci	Ignore shading

⁽Q6, Jan 2012)

35	(i)	21 +11i	B1	Real part correct	
			B1	Imaginary part correct	
			[2]		
	(ii)		M1	Multiply by conjugate of denominator or find a pair of simultaneous equations	
		26 – 29i	A1	Obtain correct numerator or real part	
		26 29.	A1	Obtain correct denominator or imaginary part	
		$\frac{1}{41} - \frac{1}{41}$			
			[3]		

РМТ

PM

(Q1, June 2012)

36	(i)		B1B1	Circle, centre (3,4)
			B1ft	Touching x-axis, ft for $(3, -4)$ ere as centre
			B1ft	Crossing y-axis twice
			B1B1	Horizontal line, y intercept 4
			[6]	
	(ii)	-1 + 4i 7 + 4i	B1B1	State correct answers
			[2]	
	(iii)		B1ft	Inside circle or above line
			B1	Completely correct diagram
			[2]	

(Q7, June 2012)

37	(i)	$ z = \sqrt{5}$	B1	Allow 2.2
		$argz = -26.6^{\circ} \text{ or } -0.464$	B1	Allow -27° or -0.46(3)
			[2]	
	(ii)		B1	$z^* = 2 + i$ stated or used
			M1	Obtain two equations from real and imaginary parts
		a+b=2, b-a=-8	A1	Obtain correct equations
			M1	Attempt to solve 2 linear equations
		a = 5, b = -3	A1	Obtain correct answers
			[5]	

РМТ

(Q3, Jan 2013)

38	(i)	(a)	B1	Circle
			B1	Centre O and radius 2
			[2]	
	(i)	(b)	B1	Horizontal line
			B1	(3, 1) on their line
			B1	$\frac{1}{2}$ line to left i.e. horizontal
			[3]	
	(ii)		B1	Shade only inside their circle or above their horizontal line
			B1	Completely correct diagram
			[2]	
				(Q7, Jan 20
				(@7, 001/20

РМТ PMT

39	+	M1	Use correct trig expression
	$\sqrt{3}$	A1	Obtain correct answer
	\checkmark	M1	Correct expression for modulus
	2√3	A1FT	Obtain correct answer aef
	$3 \equiv \sqrt{3}i$	B1FT	Correct conjugate seen or implied
	(-√3 i	B1FT	Correct answer
	× ·	[6]	

РМТ

40		$x^2 - y^2 = 11$ and $xy = 6\sqrt{5}$	M1	Attempt to equate real and imaginary parts of $(x + iy)^2$ and $11 + 12\sqrt{5}$	
			A1	Obtain both results cao	
			M1*	Obtain a quadratic in x^2 or y^2	
		$\pm (2\sqrt{5}+3i)$	DM1	Solve a 3 term quadratic to obtain a value for x or y	
			A1	Obtain 1 correct answer as complex number	
			A1	Obtain only the other correct answer	
			[6]		
		x		k (Q3, June 2	013)
		(_		d	
		(k	
		(–			
	 1	1			

41	(i)		M1	Use arg $(z - a) = \theta$ in equation for <i>l</i> condone missing brackets
		$\arg(z-3i) = \frac{1}{4}\pi$	A1	Obtain correct answer
			M1	Use $ z-a = k$ in equation for <i>C</i> , <i>k</i> must be real
		z-3i =3	A1	Obtain correct answer
			[4]	
	(ii)	$ z-3i \le 3$ or e.g. $x^2 + (y-3)^2 \le 9$ $\frac{1}{4}\pi \le \arg(z-3i) \le \frac{1}{2}\pi$ or $y \ge x+3, x \ge 0$	B1	Obtain correct inequality, or answer consistent with sensible (i)
		$\frac{1}{4}\pi \le \arg(z-3i) \le \frac{1}{2}\pi$ or $y \ge x+3$, $x \ge 0$	B1 B1	Each correct single inequality, or answer consistent with sensible (i)
			[3]	SC if < used consistently, but otherwise all correct, B2

(Q6, June 2013)

⁽Q1, June 2013)