## OCR Maths FP1

# Topic Questions from Papers 

## Complex Numbers

Answers

| 1 | (i) $22-2 \mathrm{i}$ | B1B1 | 2 | Correct real and imaginary parts |
| :--- | :--- | :--- | :--- | :--- |
|  | (ii) $z^{*}=2-3 \mathrm{i}$ |  |  |  |
| $5-14 \mathrm{i}$ | B1 |  | Correct conjugate seen or implied |  |
|  | (iii) $\frac{4}{17}+\frac{1}{17} \mathrm{i}$ | M1B1 | 3 | Correct real and imaginary parts <br> M1 |
|  |  | A1 | 2 | Attempt to use $w^{*}$ <br> Obtain correct answer in any form |

(Q3, June 2005)

| 2 | $x^{2}-y^{2}=21$ and $x y=-10$ | M1 |  | Attempt to equate real and imaginary parts of <br> $(x+\text { iy })^{2}$ and 21 -20 i |
| :--- | :--- | :--- | :--- | :--- |
| Obtain each result |  |  |  |  |
| Eliminate to obtain a quadratic in $x^{2}$ or $y^{2}$ |  |  |  |  |
| Solve to obtain $x=( \pm) 5$ or $y=( \pm) 2$ |  |  |  |  |
| M1 |  |  |  |  |
| M1 |  |  |  |  |
| $\pm(5-2 \mathrm{i})$ | A1 | 6 | Obtain correct answers as complex numbers <br> O |  |

(Q4, June 2005)

| 3 |  | Circle <br> Centre (0, 2) <br> Radius 2 <br> Straight line <br> Through origin with positive slope <br> 0 or $0+0 i$ and $2+2 i$ | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1ftB1f } \\ & \text { t } \end{aligned}$ | 5 2 | Sketch(s) showing correct features, each mark independent <br> Obtain intersections as complex numbers |
| :---: | :---: | :---: | :---: | :---: | :---: |

(Q6, June 2005)


(Q7, Jan 2006)

| $\mathbf{6}$ | (i) $2+3 \mathrm{~B}$ | B1 | 1 | Conjugate seen |
| :--- | :--- | :--- | :--- | :--- |

(Q3, June 2006)

\begin{tabular}{|c|c|c|c|c|}
\hline 7 \& \begin{tabular}{l}
(i) -7 i \\
(ii)
\[
\begin{gathered}
2+3 i \\
-5+12 i
\end{gathered}
\] \\
(iii) \(\frac{1}{5}(4-7 \mathrm{i})\) or equivalent
\end{tabular} \& \begin{tabular}{l}
B1
B1 \\
B1 \\
B1 \\
B1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 2
3

3

8 \& | Real part correct |
| :--- |
| Imaginary part correct |
| $\mathrm{i} z$ stated or implied or $\mathrm{i}^{2}=-1$ seen |
| Real part correct |
| Imaginary part correct |
| Multiply by conjugate |
| Real part correct |
| Imaginary part correct |
| N.B. Working must be shown | <br>

\hline
\end{tabular}

(Q5, June 2006)

| 8 | (i) Circle, Centre $O$ radius 2 One straight line Through $O$ with + ve slope In $1^{\text {st }}$ quadrant only <br> (ii) $1+i \sqrt{3}$ | B1 B1 <br> B1 <br> B1 <br> B1 <br> M1 <br> A1 | 5 <br>  <br> 2 <br> 7 | Sketch showing correct features <br> Attempt to find intersections by trig, solving equations or from graph Correct answer stated as complex number |
| :---: | :---: | :---: | :---: | :---: |


| 9 | $x^{2}-y^{2}=15 \text { and } x y=4$ $\pm(4+\mathrm{i})$ | M1 <br> A1 A1 <br> M1 <br> DM1 <br> A1 | 6 6 | Attempt to equate real and imaginary parts of $(x+i y)^{2}$ and 15 $+8 i$ <br> Obtain each result <br> Eliminate to obtain a quadratic in $x^{2}$ or $y^{2}$ <br> Solve to obtain $x=( \pm) 4$, or $y=$ $( \pm) 1$ <br> Obtain only correct two answers as complex numbers |
| :---: | :---: | :---: | :---: | :---: |

(Q2, Jan 2007)

| 10 | (i) | B1 |  | Circle |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | B1 |  |
| Centre (1, -1) |  |  |  |  |
| (ii) | B1 | 3 | Passing through (0, 0) |  |
|  |  | B1 |  | Sketch a concentric circle |
| Inside (i) and touching axes |  |  |  |  |
|  |  | B1 | 3 | Shade between the circles |

(Q4, Jan 2007)

\begin{tabular}{|c|c|c|c|c|}
\hline 11 \& (i) \& B1 \& 1 \& Show given answer correctly <br>
\hline \& (ii)
$$
\text { (iii) }-1 \pm \mathrm{i} \sqrt{3}
$$ \& $$
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$ \& 3

3

7 \& | Attempt to solve quadratic equation or substitute $x+\mathrm{i} y$ and equate real and imaginary parts |
| :--- |
| Obtain answers as complex numbers Obtain correct answers, simplified Correct root on $x$ axis, co-ords. shown |
| Other roots in $2^{\text {nd }}$ and $3^{\text {rd }}$ quadrants |
| Correct lengths and angles or coordinates or complex numbers shown | <br>

\hline
\end{tabular}

(Q5, Jan 2007)

12
EITHER
$a=2$
$b=2 \sqrt{3}$,

OR $\quad$| $a=2 \quad b=2 \sqrt{3}$ |
| :--- |

M1
A1

Use trig to find an expression for $a$ (or $b$ )
Obtain correct answer
Attempt to find other value
Obtain correct answer a.e.f.
(Allow 3.46 )
State 2 equations for $a$ and $b$
Attempt to solve these equations
Obtain correct answers a.e.f.
$\mathrm{SR} \pm$ scores A1 only
(Q1, June 2007)

13 (i) Circle, centre $(3,0)$, $y$-axis a tangent at origin Straight line, through $(1,0)$ with +ve slope In $1^{\text {st }}$ quadrant only
(ii) Inside circle, below line, above $x$-axis

| B1B1 |  |
| :--- | :--- |
| B1 |  |
| B1 |  |
| B1 |  |
| B1 |  |
| B2ft | 6 |
|  | 2 |
|  | $\mathbf{8}$ |

Sketch showing correct features N.B. treat 2 diagrams asa MR

Sketch showing correct region SR: B1ft for any 2 correct features
(Q8, June 2007)

| 14 | (i) $x^{2}-y^{2}=16 \text { and } x y=15$ $\pm(5+3 i)$ <br> (ii) $\begin{aligned} & z=1 \pm \sqrt{16+30 \mathrm{i}} \\ & 6+3 \mathrm{i}, \quad-4-3 \mathrm{i} \end{aligned}$ | A1A1 <br> M1 <br> M1 <br> A1 <br> M1* <br> A1 <br> *M1dep <br> A1 A1ft | 6 <br>  <br> 5 <br> 11 | Attempt to equate real and imaginary parts of $(x+\mathrm{i} y)^{2}$ and $16+30 \mathrm{i}$ <br> Obtain each result <br> Eliminate to obtain a quadratic in $x^{2}$ or $y^{2}$ <br> Solve to obtain $x=( \pm) 5 \text { or } y=( \pm) 3$ <br> Obtain correct answers as complex numbers <br> Use quadratic formula or complete the square <br> Simplify to this stage <br> Use answers from (i) <br> Obtain correct answers |
| :---: | :---: | :---: | :---: | :---: |



(Q6, Jan 2008)

(Q2, June 2008)

18 (i)

$$
\begin{aligned}
& x^{2}-y^{2}=5 \text { and } x y=6 \\
& \pm(3+2 \mathrm{i})
\end{aligned}
$$

M1 Attempt to equate real and imaginary parts of $(x+\mathrm{i} y)^{2}$ and $5+12 \mathrm{i}$
A1 Obtain both results
M1 Eliminate to obtain a quadratic in $x^{2}$ or $y^{2}$
M1 Solve a 3 term quadratic \& obtain $x$ or $y$
A1 Obtain correct answers as complex nos.
5
B1B1 Correct real and imaginary parts
2
M1 Attempt to solve a quadratic equation
A1 Obtain correct answers
A1A1 Each pair of correct answers a.e.f.

| $\mathbf{1 9}$ |  | M1 |  | Multiply by conjugate of denominator |
| :--- | :--- | :--- | :--- | :--- |
|  |  | A1 A1 |  | Obtain correct numerator |
| A1 | 4 | Obtain correct denominator |  |  |

(Q1, Jan 2009)

\begin{tabular}{|c|c|c|c|c|}
\hline 20 \& \begin{tabular}{l}
\[
\text { (i) } \begin{array}{ll} 
\& x^{2}-y^{2}=2,2 x y=\sqrt{5} \\
\& 4 x^{4}-8 x^{2}-5=0 \\
\& x= \pm \frac{\sqrt{10}}{2}, y= \pm \frac{\sqrt{2}}{2} \\
\& \pm\left(\frac{\sqrt{10}}{2}+\mathrm{i} \frac{\sqrt{2}}{2}\right) \\
\text { (ii) } \& z^{2}=2 \pm \mathrm{i} \sqrt{5} \\
\& z= \pm\left(\frac{\sqrt{10}}{2} \pm \mathrm{i} \frac{\sqrt{2}}{2}\right)
\end{array}
\] \\
(i) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1ft \\
B1ft \\
B1 B1ft B1ft
\end{tabular} \& 4
1

3

14 \& | Attempt to equate real and imaginary parts Obtain both results a.e.f. |
| :--- |
| Eliminate to obtain quadratic in $x^{2}$ or $y^{2}$ |
| Solve to obtain $x$ (or y ) values |
| Correct values for both x \& y obtained a.e.f. |
| Correct answers as complex numbers |
| Solve quadratic in $z^{2}$ |
| Obtain correct answers |
| Use results of (i) |
| Obtain correct answers, ft must include root from conjugate |
| Sketch showing roots correctly |
| Sketch of straight line, $\perp$ to $\alpha$ Bisector | <br>

\hline
\end{tabular}

(Q10, Jan 2009)

| 21 | (i) $11-29$ i | B1 B1 | 2 | Correct real and imaginary parts |
| :--- | :--- | :--- | :--- | :--- |
|  | (ii) $1+41 \mathrm{i}$ | B1 B1 | 2 | Correct real and imaginary parts |

(Q3, June 2009)

22
(i) $3 \sqrt{2},-\frac{\pi}{4}$ or $-45^{\circ}$ AEF
(ii)(a)
(ii)(b)

B1 ft
B1
B1
B1
(iii)

B1ft
B1ft
B1ft

| B1 B1 | 2 | State correct answers |
| :---: | :---: | :---: |
| B1B1 | 3 | Circle, centre ( $3,-3$ ), |
| B1 ft |  | through $O$ ft for ( $\pm 3, \pm 3$ ) only |
| B1 |  | Straight line with +ve slope, |
| B1 | 3 | through ( $3,-3$ ) or their centre |
| B1 |  | Half line only starting at centre |
| B1ft |  | Area above horizontal through $a$, |
| B1ft |  | below (ii) (b) |
| B1ft | $\begin{gathered} 3 \\ 11 \end{gathered}$ | Outside circle |

(Q6, June 2009)

23
$x-\mathrm{i} y$
$x+2 y=12 \quad 2 x+y=9$
$z=2+5 \mathrm{i}$

B1 Conjugate known
M1 Equate real and imaginary parts
A1 Obtain both equations, OK with factor of i
M1 Solve pair of equations
A1 5 Obtain correct answer as a complex number
S.C. Solving $z+2 \mathrm{i} z=12+9 \mathrm{i}$ can get max $4 / 5$, not first B1
5
(Q3, Jan 2010)

| 24(i) | M1 |  | Attempt to equate real and imaginary parts of $(x+\mathrm{i} y)^{2} \& 5-12 \mathrm{i}$ |
| :---: | :---: | :---: | :---: |
| $x^{2}-y^{2}=5$ and $x y=-6$ | A1 |  | Obtain both results, a.e.f |
|  | M1 |  | Obtain quadratic in $x^{2}$ or $y^{2}$ |
|  | M1 |  | Solve to obtain $x=( \pm) 3$ or $y=( \pm) 2$ |
| $\pm(3-2 \mathrm{i})$ | A1 | 5 | Obtain correct answers as complex nos |
| (ii) |  |  | B1ft Circle with centre at their |
| square root |  |  |  |
|  | B1 |  | Circle passing through origin |
|  | B1ft |  | $2^{\text {nd }}$ circle centre correct relative to $1^{\text {st }}$ |
|  | $\begin{aligned} & \text { B1 } \\ & 9 \end{aligned}$ | 4 | Circle passing through origin |

(Q8, Jan 2010)

25
(i) $5+12 \mathrm{i}$

13
B1B1 Correct real and imaginary parts
B1ft Correct modulus
$67.4^{\circ}$ or 1.18
B1ft 4 Correct argument
(ii)
$\begin{array}{ll}\text { M1 } & \text { Multiply by conjugate } \\ \text { A1 } & \text { Obtain correct numerator }\end{array}$
A1 3 Obtain correct denominator
7

26 (i) (a)
B1B12 Circle centre (3, -4), through origin
(b)

B1B12 Vertical line, clearly $x=3$
(ii)

B1ft Inside their circle
B1ft 2 And to right of their line, if vertical

27 (i)

$$
\begin{aligned}
& x^{2}-y^{2}=3 \quad x y=2 \\
& z=2+\mathrm{i}
\end{aligned}
$$

(ii)
(iii)

$$
w^{3}=2 \pm 11 \mathrm{i}
$$

$$
w=2-\mathrm{i}
$$

M1 Attempt to equate real and imaginary parts
A1 Obtain both results
M1 Eliminate to obtain quadratic in $x^{2}$ or $y^{2}$
M1 $\quad$ Solve to obtain $x$ or $y$ value
A1 5 Obtain correct answer as a complex no.

B1 1 Obtain given answer correctly

M1 Attempt to solve quadratic equation
A1 Obtain correct answers
M1 Choose negative sign
M1 Relate required value to conjugate of (i)
A1 5 Obtain correct answer
11
(Q10, June 2010)

(b)

B1 Sloping line with + ve slope
B1 Through ( $0,-2$ )
B1ft 3 Half line starting on $y$-axis $45^{\circ}$ shown convincingly

(ii) \begin{tabular}{lll}
B1ft <br>
B1ft

$\quad$

Shaded to left of their (i) (a) <br>
Shaded below their (i) (b) must be +ve <br>
slope
\end{tabular}

| 30 (i) | $\|a\|=2$ | B1 |  | Correct modulus |
| :---: | :---: | :---: | :---: | :---: |
|  | $\arg a=60^{\circ}, \frac{\pi}{3}, 1.05$ | B1 | 2 | Correct argument |
| (ii) |  | B1 |  | Circle |
|  |  | B1 |  | Centre ( $1, \sqrt{3}$ ) |
|  |  | B1 |  | Through origin, centre $( \pm 1, \pm \sqrt{3})$ and another y intercept |
|  |  | B1 |  | Vertical line |
|  |  | B1* |  | Through $a$ or their centre, with +ve gradient |
|  |  | DB1 |  | Correct half line |
|  |  | 8 | 6 |  |


| 31 (i) $16+30 \mathrm{i}$ | B1 | 1 | State correct value |
| :---: | :---: | :---: | :---: |
| $a=-32$ | M1 |  | Use $a=-$ ( sum of roots ) |
|  | A1 |  | Obtain correct answer |
|  | M1 |  | Use $b=$ product of roots |
| $b=1156$ | A1 | 4 | Obtain correct answer |
|  | M1 |  | Substitute, expand and equate imag. parts |
|  | A1 |  | Obtain $\mathbf{a}=-32$ |
|  | M1 |  | Equate real parts |
|  | A1 |  | Obtain $\mathrm{b}=1156$ |
|  | M1 |  | Attempt to equate real and imaginary parts of $(p+\mathrm{i} q)^{2} \& 16-30 \mathrm{i}$ or root from (ii) |
|  | A1 |  | Obtain both results cao |
|  | M1 |  | Obtain quadratic in $p^{2}$ or $q^{2}$ |
|  | M1 |  | Solve to obtain $p=( \pm) 5$ or $q=( \pm) 3$ |
|  | A1 |  | Obtain 2 correct answers as complex nos |
|  | M1 |  | Attempt at all 4 roots |
| $\pm(5 \pm 3 \mathrm{i})$ | $\begin{aligned} & \mathrm{A} 1 \\ & 12 \end{aligned}$ | 7 | State other two roots as complex nos |

$\left.\begin{array}{|l|l|l|c|l|l|}\hline 32 & & \begin{array}{c}a^{2}+5^{2}=13^{2} \\ a=12 \\ \tan ^{-1} \frac{5}{a} \\ 0.395 \text { or } 22.6^{\circ} \text { or } 0.126 \pi\end{array} & \begin{array}{c}\text { M1 } \\ \text { A1 }\end{array} & \begin{array}{l}\text { Use formula for modulus } \\ \text { Obtain correct answer }\end{array} \\ \text { M1 } \\ \text { A1FT } \\ \text { [4] }\end{array} \quad \begin{array}{l}\text { Use formula for argument } \\ \text { Obtain correct answer allow } 0.39\end{array}\right]$
(Q1, Jan 2012)

4
(Q3, Jan 2012)

| 34 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | B1 | Circle |
|  |  |  | B1 | Centre $(\sqrt{3}, 1)$ |  |
|  |  |  | B1 | Passing through $O$ and crosses y-axis again |  |
|  |  |  | B1 | Line, with correct slope shown |  |
|  |  |  | B1 | $\frac{1}{2}$ line starting at $O$ |  |
|  |  |  | B1 | Completely correct diagram for both loci |  |
|  |  |  |  |  |  |
|  |  |  | Ignore shading |  |  |

(Q6, Jan 2012)

| 35 | (i) | $21+11 \mathrm{i}$ | B1 <br> B1 <br> [2] | Real part correct Imaginary part correct |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (ii) | $\begin{aligned} & 26-29 i \\ & \frac{26}{41}-\frac{29}{41} i \end{aligned}$ | M1 <br> A1 <br> A1 <br> [3] | Multiply by conjugate of denominator or find a pair of simultaneous equations <br> Obtain correct numerator or real part <br> Obtain correct denominator or imaginary part |  |

(Q1, June 2012)

| 36 (i) |  | $\begin{gathered} \hline \text { B1B1 } \\ \text { B1ft } \\ \text { B1ft } \\ \text { B1B1 } \\ \text { [6] } \\ \hline \end{gathered}$ | Circle, centre ( 3,4 ) <br> Touching $x$-axis, ft for $\left(3_{2}-4\right)$ et $\varepsilon$ as centre <br> Crossing $y$-axis twice <br> Horizontal line, $y$ intercept 4 |  |
| :---: | :---: | :---: | :---: | :---: |
| (ii) | $-1+4 i \quad 7+4 i$ | $\begin{gathered} \text { B1B1 } \\ \text { [2] } \\ \hline \end{gathered}$ | State correct answers |  |
| (iii) |  | $\begin{aligned} & \text { B1ft } \\ & \text { B1 } \\ & {[2]} \end{aligned}$ | Inside circle or above line Completely correct diagram |  |

(Q7, June 2012)

| 37 | (i) | $\begin{aligned} & \|z\|=\sqrt{5} \\ & \operatorname{argz}=-26.6^{\circ} \text { or }-0.464 \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$ | Allow 2.2 <br> Allow - $27^{\circ}$ or -0.46(3) |
| :---: | :---: | :---: | :---: | :---: |
|  | (ii) | $\begin{aligned} & a+b=2, b-a=-8 \\ & a=5, b=-3 \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$ | $z^{*}=2+\mathrm{i}$ stated or used <br> Obtain two equations from real and imaginary parts Obtain correct equations <br> Attempt to solve 2 linear equations <br> Obtain correct answers |

(Q3, Jan 2013)

| 38 | (i) | (a) |  | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \\ & \hline \end{aligned}$ | Circle Centre $O$ and radius 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (i) | (b) |  | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \\ & \hline \end{aligned}$ | Horizontal line ( 3,1 ) on their line $1 / 2$ line to left i.e. horizontal |
|  | (ii) |  |  | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$ | Shade only inside their circle or above their horizontal line Completely correct diagram |

(Q7, Jan 2013)

| 39 | $\begin{aligned} & \sqrt{3} \\ & 2 \sqrt{3} \\ & 3-\sqrt{3 i} \\ & -\sqrt{3} i \end{aligned}$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1FT } \\ \text { B1FT } \\ \text { B1FT } \\ {[6]} \end{gathered}$ | Use correct trig expression Obtain correct answer Correct expression for modulus Obtain correct answer aef Correct conjugate seen or implied Correct answer |
| :---: | :---: | :---: | :---: |

(Q1, June 2013)

(Q3, June 2013)

| 41 | (i) | $\arg (z-3 i)=\frac{1}{4} \pi$ $\|z-3 i\|=3$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$ | Use $\arg (z-\mathrm{a})=\theta$ in equation for $l$ condone missing brackets Obtain correct answer Use $\|z-a\|=k$ in equation for $C, k$ must be real Obtain correct answer |
| :---: | :---: | :---: | :---: | :---: |
|  | (ii) | $\begin{aligned} & \|z-3 i\| \leq 3 \text { or e.g. } x^{2}+(y-3)^{2} \leq 9 \\ & \frac{1}{4} \pi \leq \arg (z-3 i) \leq \frac{1}{2} \pi \text { or } y \geq x+3, x \geq 0 \end{aligned}$ | $\begin{gathered} \text { B1 } \\ \text { B1 B1 } \\ {[3]} \end{gathered}$ | Obtain correct inequality, or answer consistent with sensible (i) Each correct single inequality, or answer consistent with sensible (i) SC if < used consistently, but otherwise all correct, B2 |

